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SUMMARY

Neurons in monkey primary motor cortex (M1) tend
to bemost active for certain directions of handmove-
ment and joint-torque loads applied to the limb. The
origin and function of these biases in preference
distribution are unclear but may be key to under-
standing the causal role of M1 in limb control. We
demonstrate that these distributions arise naturally
in a network model that commands muscle activity
and is optimized to control movements and counter
applied forces. In the model, movement and load
preference distributions matching those observed
empirically are only evident when particular features
of the musculoskeletal system were included: limb
geometry, intersegmental dynamics, and the force-
length/velocity properties of muscle were dominant
factors in dictating movement preferences, and the
presence of biarticular muscles dictated load prefer-
ences. Our results suggest a general principle: neural
activity in M1 commands muscle activity and is
optimized for the physics of the motor effector.

INTRODUCTION

Two fundamental aspects of motor control which underlie the

diverse set of behaviors displayed by primates are (1) the ability

to make directed movements and (2) the ability to stabilize a limb

against imposed forces, such as those induced by grasped

objects (Figures 1A and 1B). In experiments designed to probe

the neural mechanisms underlying these tasks, single neurons

in monkey primary motor cortex (M1) were found to be most

active for (i.e., prefer) certain movement directions and applied

forces. These preferred movement directions were initially

thought to be distributed uniformly in space (Georgopoulos

et al., 1988; Caminiti et al., 1990a). Subsequent studies have

revealed that these movement preferences have tendencies to

cluster around particular directions (Mitsuda and Onorati,

2002; Naselaris et al., 2006) and that these biases are markedly
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stronger when the arm is maintained in the horizontal plane

(Figure 1C; Scott and Kalaska, 1997; Scott et al., 2001). Similarly,

M1 neurons have been shown to exhibit pronounced preference

distribution biases for certain forces applied during postural

tasks (Figure 1D; see Experimental Procedures for details;

Cabel et al., 2001; Herter et al., 2007; Ajemian et al., 2008).

The origin and function of the observed preference biases has

remained unclear but may be key to understanding the causal

role of M1 activity in the control of posture and movement.

It has been suggested that the nonuniform distribution of

preferred movement directions reflects directional hyperacuity

and develops as a result of biases in spatial experience (Nasela-

ris et al., 2006), e.g., from having more experience reaching

away from and toward the body than left or right, perhaps akin

to how orientation biases are thought to emerge in primary visual

cortex (Blakemore and Cooper, 1970; Li et al., 2008). A number

of studies support this idea, demonstrating that the cortical

representation of movements is use-dependent, such that

more M1 neurons become involved in frequently performed

actions (Nudo et al., 1996; Classen et al., 1998).

Alternatively, it has been proposed that the observed non-

uniform distributions in preferred movement and torque

directions (PMD and PTD, respectively) are dictated by the

mechanical and anatomical properties of the limb (Scott and

Kalaska, 1997; Scott et al., 2001; Herter et al., 2007). For

example, if motor cortical units directly control muscle activity

(Evarts, 1968; Bennett and Lemon, 1996; Todorov, 2000; Holde-

fer and Miller, 2002), then movements which require more

muscle activity might require correspondingly higher levels of

neural activation. This hypothesis is supported indirectly by the

fact that muscles recorded during reaching and loaded-posture

show trends in their distribution of preferences similar to those

observed for neurons (Kurtzer et al., 2006a, 2006b; Figures 1E

and 1F).

This debate on the nature of preference distributions in M1

parallels the debate over what motor cortex encodes or repre-

sents (Evarts, 1968; Mussa-Ivaldi, 1988; Kakei et al., 1999). A

long history of studies have documented correlations between

neural activity in M1 and both ‘‘intrinsic’’ (e.g., muscle activity

and joint forces; Phillips and Porter, 1964; Evarts, 1968, 1969;

Humphrey, 1972; Conrad et al., 1977; Asanuma et al., 1979;

Cheney and Fetz, 1980; Kalaska et al., 1989; Holdefer andMiller,
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Figure 1. M1 Neurons Tend to Prefer Particular Movements and

Loads

(A) In the center-out reaching task a monkey moves its hand from a central

target to peripheral targets evenly spaced around a circle (radius = 0.06 m).

(B) In the loaded-posture task the monkey maintains a fixed posture while nine

different joint-based loads are applied by the KINARM robot.

(C) Polar histogram of preferred movement directions of M1 neurons ðn= 395Þ
recorded during the center-out task performed by the contralateral arm; the

activity of each neuronwas fit by a plane to determine its directional preference

and those with significant fits ðp<0:05Þ are included here. The length of each

line represents the number of neurons which fell into one of 16 equally spaced

bins. Neurons tend to prefer movements away from the body and a little to the

left, or movement toward the body and a little to the right. Red line denotes

a significant bimodal distribution at the given orientation (Bimodal Rayleigh

r =0:37, orientation q=98:4�, n= 396, p<10�3 by bootstrap).

(D) Polar histogram of preferred torque directions (plane fit, p<0:05) of M1

neurons ðn= 502Þ recorded during a postural-load task. Line denotes

a significant bimodal distribution. Neurons tend to prefer shoulder flexor tor-

ques combined with elbow extensor torque, or else shoulder extensor torques

combined with elbow flexor torques (Bimodal Rayleigh r = 0:31, orientation

q= 132:4�, n= 502, p<10�3 by bootstrap).

(E and F) Muscles recorded during reaching (E) and loaded-posture (F) show

similar bimodal distributions of preferred directions (Kurtzer et al., 2006a). Grey

circles ( ) denote monoarticular shoulder muscles; black diamonds (A),

monoarticular elbow muscles; empty triangles (6), biarticular muscles.
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2002) and ‘‘extrinsic’’ (e.g., hand position and movement in

Cartesian space; Kalaska et al., 1989; Georgopoulos et al.,

1988; Caminiti et al., 1990a, 1990b; Kakei et al., 2001) variables.

Implicit in the hyperacuity hypothesis is that the direction of hand

motion or other goal-related features are explicitly encoded by

M1. By contrast, the hypothesis that neural preferences have
their origin in the properties of the peripheral biophysics implies

that M1 is intimately involved in the development of low-level

muscle activity. Under this view, correlations observed with

high level variables such as hand direction, velocity, or force

are viewed as incidental and are thought to occur because of

causal links between muscle activity and limb physics (Mussa-

Ivaldi, 1988; Todorov, 2000).

Due to systemic correlations and the interconnected nature of

limb physics and neural control (Todorov, 2000; Mussa-Ivaldi,

1988; Kalaska, 2009; Reimer and Hatsopoulos, 2009), it has

been difficult to experimentally address these hypotheses.

How can we separate the manner in which neural processing

in M1 is influenced by factors such as biased spatial experience,

limb geometry, intersegmental dynamics, musculoskeletal

organization, and muscle mechanics? Optimal control theory,

the field of mathematics concerned with finding the best way

of acting (Stengel, 1994), is a natural way to formalize and

understand the complex interplay inherent in biological motor

control and has proven a powerful tool for explaining why

animals display particular behaviors (Parker and Smith, 1990;

Alexander, 1996; Todorov, 2004; Todorov and Jordan, 2002;

Scott, 2012). Here, by applying optimal control theory to a

simple network model, we systematically examine how the

above-mentioned factors dictate neural processing in simulated

neural populations.

Our model is fundamentally different from many of the models

which have previously been used to examine M1 function (e.g.,

Todorov, 2000; Guigon et al., 2007; Shah et al., 2004; Trainin

et al., 2007). The network we develop is capable of generating

optimal movements online without the need for inputs specifying

trajectory kinematics, performing in the presence of noise, and

responding to external perturbations. Thus, our model is not

simply a phenomenological (i.e., curve fitting) model of preferred

direction distributions. Instead the model is mechanistic and

functions by generating movements using peripheral feed-

back—the preference distributions we examine are merely

a way to statistically characterize this mechanism and compare

it to experimental data.

Analysis of preference distributions in our network model

favors the hypothesis that biases are dictated by the biome-

chanics of the limb. Our results demonstrate that the prominent

biases in M1 preference distributions emerge robustly in artificial

networks optimized to control movements and counter loads

under two crucial assumptions: (1) network units command

muscle activity via a simple linear filter and (2) that muscle and

neuron activity are kept small. In addition, we use our model to

demonstrate how variations in arm position and changes in the

anatomical organization of biarticular muscles influence network

preference distributions.

RESULTS

Dynamic Network Model
We built a dynamic network model that controlled a model of

the primate upper limb (Figure 2). The model was optimized to

make reaches and maintain postures under static loads while

keeping neural and muscle activities and synaptic weights

small (Fagg et al., 2002; Shah et al., 2004; Trainin et al., 2007).
Neuron 77, 168–179, January 9, 2013 ª2013 Elsevier Inc. 169
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Figure 2. The Model Performing Center-Out Reaching Task

(A) Schematic of the dynamic model. The network computes commands

internally in a feedforward fashion, but receiveson-line feedback from theplant.

(B) Example reaches made by the network over the trained workspace. Thin

arcs delimit the reachable workspace, and the dashed box shows the area of

the workspace over which the network was trained. Green circles denote start

(no border) and end (black border) targets. Eight example reachesmade by the

network in the center-out task are highlighted. Centre target placed shoulder

and elbow joints at 32:6� and 84:2�, respectively.
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The inclusion of a penalty term which encourages small synaptic

weights is not strictly necessary—our results are qualitatively

the same without this penalty. However, we found that the

generalization capabilities of the network were improved by

incorporation of this regularization term (Krogh and Hertz,

1993; Hinton and van Camp, 1993). The network itself was feed-

forward, but was connected in closed loop with the model of the

limb, and consisted of a vector of standard sigmoidal units, zðtÞ,
which sent their weighted activity to a vector of six lumped

muscle actuators, uðtÞ. The units zðtÞ—which may be thought

of as motor cortical neurons—received limb state feedback,

xðtÞ, and goal information, y�ðtÞ, passed through a preceding

layer of sigmoidal units acting as an input filter. The correspond-

ing muscle activity at time t is given by uðtÞ=suðWout$zðtÞÞ,
where suð$Þ is a smooth ramp function and Wout is a matrix of

synaptic weights which dictate how activity in zðtÞ leads to

changes in muscle activity. In the simulations presented here

Wout was random and fixed with elements of the matrix drawn

from a Normal distribution (Todorov, 2000; Shah et al., 2004;

Trainin et al., 2007). Using a version of backpropagation through

time (Rumelhart et al., 1986; Werbos, 1990; Stroeve, 1998)

modified for our model, we computed the partial derivatives of

the cost function with respect to the adjustable parameters in

the model and used a conjugate gradient descent algorithm

to find a local minimum (see Experimental Procedures, and see

Supplemental Information available online).

Following optimization, we instructed the network to perform

the same center-out reaching and loaded-posture tasks per-

formed by our monkeys, with the limb at a central position in

the workspace (Scott et al., 2001; Figure 2B). The activity of

the network units, zðtÞ, were ‘‘recorded’’ as it performed each

task and analyzed using planar regression to determine each

unit’s movement and load preferences (i.e., analogous to the

analysis ofM1 neurons). The network produces relatively straight

handpaths with bell-shaped velocity profiles (Figures 2C and

2D). As well, the muscle activity and neural activity profiles qual-

itatively agree with that reported in the literature (Figures 2E

and 2F). Units tended to be broadly tuned to hand movement

direction and exhibited a mixture of phasic and tonic responses

(Scott and Kalaska, 1997; Scott et al., 2001; Cheney and Fetz,

1980; Georgopoulos et al., 1988). The behavior during posture

is not pictured but is comparatively simple, and easy to describe:

the network successfully stabilized the hand against loads at the

central target and neural and muscle activity were relatively

constant during these trials. As observed empirically during

loaded-posture, modeled units and muscles were broadly tuned

to load combinations and were well fit by a linear regression

(Kurtzer et al., 2006a; Herter et al., 2007).
(C) Close-up of center-out reaches with direction of reaches labeled.

(D) Velocity of hand ( _x and _y) for the rightward, 0�, reach direction (reach is blue

in C).

(E and F) Modeled muscle (E, 6 lumped muscles) and unit (F, 16 random

examples out of total 1,000 units) activity during center-out reaching move-

ments in 64 equally spaced directions (eight of the 64 shown above). Horizontal

axis is time. Vertical axis is movement direction. Color indicates activation

level in arbitrary units (au): red high/blue low. Each lumped muscle and unit

have been normalized to their maximum and minimum activation levels.
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Figure 3. Modeled Unit and Muscle Preference Distributions

(A) Polar histogram of PMDs of simulated units pooled across ten networks

(units n= 1031000= 10; 000) recorded during the center-out task. The activity

of each unit was fit by a plane to determine its directional preference; only

those which had significant fits ðp<0:05Þ are shown here. The length of each

line represents the number of units which fell into one of 16 equally spaced

bins. As a population, most units prefer hand movements away and a little left,

or toward and a little right. Thin red line denotes the orientation of a significant

bimodal distribution for each network. Thick red line denotes the average

bimodal orientation (Bimodal Rayleigh averaged orientation q=108:9�, aver-
aged skew r = 0:35, p<10�3 by bootstrap).

(B) Polar histogram of PTDs of units recorded during the loaded-posture task.

Units tend to prefer shoulder flexor torques combined with elbow extensor

torque or shoulder extensor torques combined with elbow flexor torques

(q= 137:7�, r = 0:24, p<10�3); notation similar to (A).

(C and D) Polar histograms of PMDs (C) and PTDs (D) of modeled muscles; 32

equally spaced bins. PMD distribution: q= 102:2�, r =0:46, p<10�3; PTD

distribution: q= 135:4�, r = 0:224, p<10�3 (thin red lines suppressed; thick red

lines indicates mean bimodal orientation). Circles denote monoarticular

shoulder muscles; diamonds, monoarticular elbow muscles; triangles, biar-

ticular muscles.

(E) Empirical and modeled neuron PMD distributions characterized by

primary axis orientation and skew. In this polar plot, the primary axis orien-

tation is represented by the polar coordinate, and the skew by the radial

coordinate, of a given point. Each monkey’s PMD distribution is plotted as

a white circle whose size indicates the number of neurons which make up the

distribution; bolded circle indicates the mean distribution (shown in Figure 1;

n= 395). Dashed red line indicates region into which 99% of 100,000 PMD

distributions fell when 395 PMDs are drawn randomly from a uniform distri-

bution. Blue crosshair indicates the PMD distribution found using the model,

where the crosshairs delimit the skew and orientation within which 99% of

100,000 random samples of 395 units from the larger collection of optimized

units fell.
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For each optimized network, the distribution of PMDs during

the center-out reaching task was found to be strongly biased

for movements forward and left, and backward and right

(Figure 3A; Rayleigh test for bimodality, see Supplemental Infor-

mation; dominant orientation q= 109:9�, distribution skew

r = 0:30, p<10�3 by bootstrap). The distribution of PTDs for

the loaded-posture task were also significantly bimodally dis-

tributed for each network (Figure 3B; q= 137:7�, r = 0:24,

p<10�3). The muscle PMD and PTD distributions show similar

trends, also matching empirical observations (Figures 3C

and 3D). Figures 3E and 3F illustrate that the model exhibited

bimodal preference distributions which closely parallel those

observed for monkeys.

The results shown in Figure 3 are robust to a variety of manip-

ulations. We varied the size (e.g., 100–1,000 neurons) and

structure (e.g., the addition of recurrent connections) of the

network, the unit activation function, the muscle activation func-

tion suð$Þ, the regularization scalars a and b which weighted

the importance of keeping neural and muscle activity small, the

distribution from which elements of Wout were drawn, and the

movement duration and the integration timestep (see Variations

on Simulation Setup in Supplemental Information). As well, while

the model whose behavior is shown in Figures 3A–3F was opti-

mized to make reaches of a predetermined movement duration

chosen to coincide with the average reach duration of monkeys,

this is not a necessary assumption. If we instead use an instan-

taneous cost which penalizes both neural/muscle activity and

distance-to-target at each time-step, optimization finds solu-

tions which trade off arriving at the target quickly with keeping

neural/muscle activity small. In all of these cases, as long as

optimization successfully found a solution with kinematic and

gross muscle behavior matching empirical data (i.e., relatively

straight handpaths, bell-shaped velocity profiles, and engage-

ment of all six lumped muscles), the optimal distribution of

PMDs and PTDs exhibited significant bimodal skew with similar

orientations (within ± 12�). Importantly, the set of reach target

directions and applied loads which were trained on during

optimization were roughly uniformly distributed in Cartesian

and joint-torque space, respectively. Therefore, in our model,

the bimodal distributions reflect optimization of neural activity

for the biomechanical properties of the limb without the need

to introduce a bias in spatial (or force) experience.

How Do Biomechanics Influence Optimal Preference
Distributions?
How should we unravel these results and begin to understand

which facets of the model underlie the observed bimodal distri-

butions? The dynamic model allowed us to study a network

that performs real-time control, permitting direct comparison

to empirically observed behavior. To more easily link the various

biomechanical features of the modeled limb to optimal pre-

ference distributions we developed a simplified version of the

mechanistic model described above (Figure 4; see Experimental

Procedures for details).
(F) Follows the same format as (E) except that neuron PTD distributions are

plotted and the mean empirical distribution contained n= 502 units (all

samples for 99% regions used n= 502 as well).
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Figure 4. Static Approximation of the Dynamic Model

The staticmodel optimizes initiating hand velocity or steady state joint torques.

The network computes output for only a single time step and thus receives

no feedback from the periphery.

(A) Schematic of the pathway from unit activity, z, to hand velocity, _y. Optimal

neural activity in our model, z�, is found by minimizing the error between target

and actual hand velocity, e= _ytarget � _y, while keeping unit andmuscle activity,

u, small. Unit activity causes muscle activity via, u=suðWout$zÞ, whereWout is

the matrix of connection strengths between units and muscles and suð$Þ is
the standard sigmoid function which keeps muscle activity positive, ensuring

that muscles can only ‘‘pull.’’ Muscle tension forces, t, are obtained by

element-wise multiplication of muscle activity with F-L/V scaling factors

appropriate for the movement direction, i.e., t=H,u. Finally, hand velocity is

determined by the linear transformation, _y =G$F$M$t, where M is a fixed

moment arm matrix and F and G are local linear approximations to limb

dynamics and the mapping between joint and hand velocity, respectively.

(B) Schematic of the pathway from unit activity, z, to joint torques, t.

To maintain posture while loads are applied to the limb, equal and opposite

forces must be generated by the nervous system. Thus, in the posture task,

optimal neural activity z� is found by minimizing the error between target

and actual joint torques, e= ttarget � t, while keeping unit and muscle activity

small.
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Static Network Model
The simplified model is temporally and spatially local. The model

optimizes only a single time-step for each reach or loaded-

posture (i.e., the initiation of the movement in the center-out

task, or the steady state performance in the loaded posture

task) and thus does not use feedback from the periphery. We

optimized this model to generate instantaneous target hand

velocities, _ytarget, and target joint-torques, ttarget, equally spaced

around the unit circle in order to emulate the center-out reaching

(Figure 4A) and loaded posture (Figure 4B) tasks, respectively.

We examined a highly simplifiedmodel of the limb constrained

to the plane—a 2D point-mass model. We then reinitialized,

reoptimized, and reanalyzed (see Static Model Analysis in

Supplemental Information) the static network model for a series

of increasingly realistic abstractions of limb physics, allowing us
172 Neuron 77, 168–179, January 9, 2013 ª2013 Elsevier Inc.
to probe the relationship between various features of the limb

and optimal preference distributions. Figures 5A and 5B illustrate

the progressive change in optimal movement and torque

related distributions as a function of limb abstraction. As one

might expect, the predicted distributions for the full static model

were found to closely parallel those predicted by the dynamic

model (shown in Figure 3) for both units and muscles (unit

PMD distribution: q= 99:7�, r = 0:44; muscle PMD distribution:

q= 103:7�, r = 0:67; unit PTD distribution: q= 137:0�, r = 0:23;

muscle PTD distribution: q= 135:9�, r = 0:23).

Key changes in the distribution for movement direction

become evident when we added limb geometry, intersegmental

dynamics, and F-L/V muscle mechanics to the model. Perhaps

unsurprisingly, modeling the limb as a 2D point-mass (model

[1]) resulted in a uniform distribution of preferences. Addition of

limb geometry (model [2]) creates a large bias in preferences

away from the body and slightly to the left, and toward the

body and slightly to the right. Inclusion of intersegmental

dynamics (model [3]) rotates the distribution counterclockwise,

following the directions of movement corresponding to maxi-

mum joint-torque (Graham et al., 2003). Finally, inclusion of

F-L/V mechanics (model [6]) shifts the distribution clockwise

toward the direction of maximum peak joint velocities (Graham

et al., 2003). Thus, the orientation of the PMD distribution follows

the directions of movement which require the greatest amount

of muscle (or torque actuator) activity.

For the torque-related distributions (Figure 5A) there is only

one major change evident—the distribution becomes uniform

when the biarticular muscles are removed from the model.

Removal of F-L/V mechanics had little or no effect due to the

fact that the arm is assumed to be at rest and so the force-

velocity contribution is the same for every direction of torque

production.

The results of this systematic manipulation of limb physics

seem to indicate that the optimal PMD distribution is deter-

mined by multiple features of limb mechanics: limb geometry,

intersegmental dynamics, and F-L/V mechanics all appear to

play a part in determining the optimal distribution of PMDs

observed empirically. The best fit between model and empirical

observations is seen when all of these features are included in

the biomechanics. On the other hand, the PTD distribution is

determined entirely by the presence/absence of biarticular

muscles.

The static and dynamic model variants mutually reinforce

these conclusions. The static model is simpler, demonstrating

that the central results are not dependent on various design

choices made for the dynamic model. For example, in the static

model there is no feedback and neuron activity is optimized in

a nonparametric fashion (i.e., the neurons are able to take on

any real value) on a trial-to-trial basis. Since the results hold

across models, this helps to mitigate concern that the choice

of non-linearity for the dynamic model is key to observing our

results. The results from the dynamic model demonstrate that

peripheral feedback and full nonlinear biomechanics do not

substantially alter the results observed in the static linearized

case. As well, a parametric model such as our dynamic variant

is required to explore the question of biased experience (as

discussed below).
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Figure 5. In Simulations, Unit and Muscle

Preference Distributions Reflect the Biome-

chanics of the Limb

(A) Mimicking the center-out reach and loaded-

posture tasks, the static model was optimized to

produce velocities and torques evenly spaced

around the unit circle. Rows one and two show unit

PMD and PTD distributions reflecting optimal

solutions for a series of abstractions of the limb.

Distributions represent averages across ten

instantiations of the model, each with 1,000 units,

and each with the connectivity matrix, Wout,

initialized randomly. Red lines indicate a significant

bimodal distribution with the dominant axis given

by the orientation of the line. Polar histograms are

colored black to denote a bimodal distribution—

those which failed to pass significance are shown

in gray. Note that the histograms show the real

data from our static model; each of these is

composed of PDs from 10,000 units and thus will

tend to be a good approximation to the underlying

distribution. Distribution statistics [1] 2-D point-

mass (PMD distribution: q= n=a�, r = 0:02, p>0:5;

PTD distribution: q= n=a�, r = 0:002, p>0:05), [2]

addition of geometry (PMD distribution: q= 108:8�, r = 0:61, p<10�3; PTD distribution: q= n=a�, r = 0:03, p>0:05), [3] addition of intersegmental dynamics (PMD

distribution: q= 131:4�, r = 0:67, p<10�3; PTD distribution: q= n=a�, r = 0:02, p>0:05), [4] addition of monoarticular muscles (PMD distribution: q= 131:4�, r = 0:67,

p<10�3; PTD distribution: q= n=a�, r = 0:03, p>0:05), [5] addition of biarticular muscles (PMD distribution: q= 127:9�, r = 0:65, p<10�3; PTD distribution: q= 136:4�,
r =0:22, p<10�3), [6] addition of F-L/V properties (PMD distribution: q= 99:7�, r = 0:44, p<10�3; PTD distribution: q= 137:0�, r = 0:22, p<10�3), (B), Rows three and

four show static model optimized muscle PMD and PTD distributions for those limb models which included muscles. Distribution statistics: [4] monoarticular

muscles (PMD distribution: q= 165:0�, r = 0:27, p<10�3; PTD distribution: q= n=a�, r = 0:001, p>0:5), [5] additions of biarticular muscles (PMD distribution:

q= 122:9�, r = 0:58, p<10�3; PTD distribution: q= 135:9�, r = 0:219, p<10�3), [6] addition of F-L/V properties (PMD distribution: q= 103:8�, r = 0:71, p<10�3; PTD

distribution: q= 135:9�, r = 0:23, p<10�3). Grey circles ( ) denote monoarticular shoulder muscles; black diamonds (A), monoarticular elbow muscles; empty

triangles (6), biarticular muscles.
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Optimal Preference Distributions Change as a Function
of Limb Posture and Musculoskeletal Organization
Beyond determining the causes of the observed bimodal prefer-

ence distributions, our model also makes concrete predictions

about how PMD and PTD distributions ought to change as

a function of limb posture and anatomy. Figure 6 shows two

such predictions. If center-out reaching is performed in the right

half of the workspace, with the shoulder and elbow joints placed

at �5.7� and 74:5�, respectively (Figure 2A shows 0� orientation
for both joints), then the optimal PMD distribution is found to

rotate substantially in the clockwise direction (Figure 6A;

q= 54:3�, r = 0:47). This result agrees, at least qualitatively, with

previous empirical work which has shown that M1 neural popu-

lations systematically rotate their preferred directions in different

parts of the workspace (Caminiti et al., 1990a, 1990b; Sergio and

Kalaska, 2003) and in different wrist orientations (Kakei et al.,

1999).

Figure 6B shows how the anatomical organization of the

musculoskeletal system influences the distribution of PTDs in

the loaded-posture task. If the biarticular muscles were reat-

tached so that each one had a flexion/extension or extension/

flexion action rather than flexion/flexion and extension/exten-

sion, then the optimal PTD distribution would be mirrored into

the first and third quadrants (q= 44:3�, r = 0:22). While this

prediction is not easily testable, it clearly demonstrates the role

of musculoskeletal structure in determining observed neural

activity during a task.
How Does Biased Spatial Experience Affect Preference
Distributions in Our Model?
In our static model, since the optimal neural activity for a given

target velocity or torque is determined independently of other

trials, the statistics of movements and loads have, by definition,

no effect on the optimized solutions. This is also true of any

other model, e.g., those of Guigon et al. (2007), and Todorov

(2000), where the neural activity on one trial shares no underlying

parameters with other trials. As such, these models cannot be

used to evaluate how biases in spatial experience might affect

preference distributions. This is not the case in our dynamic

model where parameters are shared across tasks and move-

ments (see Experimental Procedures). Thus, at least in principle,

spatial biasesmay alter the optimal solutions found by our model

and thus influence preference distributions.

To examine the affect of biased experience in our network, we

trained our dynamic model to move the 2D point-mass abstrac-

tion of the limb to targets distributed unevenly in space. We used

the 2D point-mass because we know that a uniform distribution

of target directions leads to a uniform distribution of PMDs (see

the shaded area #1 in Figure 6A). It follows that if we see a change

from uniform in the PMD distribution, we know that this effect

results from training on a biased set of reaching directions. In

this test, the network was trained to reach from a central location

to targets placed around a circle, but with many more targets

presented forward and backward than left and right (Figures

7A and 7B; see Biased Experience in Supplemental Information).
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Figure 6. PMD and PTD Distributions for Various Limb Models and

Predicted Changes as a Function of Posture and Anatomy

(A) PMD distribution for full limb model plotted as blue circle, whereas gray

circles denote distributions for simplified limb models (see Figure 5 legend for

specific numbers). Shaded gray half circle indicates location of PMDs distri-

butions associated with the two-dimensional point mass. Green circle indi-

cates the PMD distribution found using the full limb model but with the hand

positioned far to the right in the workspace (mean q= 54:3�, r = 0:47, p<10�3).

Small dark gray circles connected with arrows illustrate the bimodal PMD

distribution parameters for the four distributions illustrated in Figure 7C.

(B) Follows the same format as panel a except that PTD distributions are

plotted and the mean empirical distribution contained n= 502 units. Pink

circle is the predicted orientation/skew of the PTD distribution if the moment

arms of the biarticular muscles are altered so that each muscle simultaneously

flexes one joint and extends the other, rather than having flexion/flexion and

extension/extension actions (mean q= 44:3�, r = 0:22, p<10�3).
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The progress of training is shown in Figure 7C. Behavior during

learning was quite variable, in part because gradient updates

depended on which targets were drawn on a given optimization

run. However, when aligned by cost (i.e., average performance),

clear trends emerged. The networks tended to learn to move

more quickly to targets forward and backward—the directions

where targets appearedmost often. As a consequence, midterm

evaluations of PMD distributions show significant bimodal

trends. This is because the network moves the point-mass

further in some directions than others and thus requires more

‘‘muscle’’ activation for these trials. This trend persists even

into later learning when kinematics in all directions look relatively

similar, since there are still differences at the level of neural/

muscular activity. However, the optimal PMD distributions

found when optimization terminated were indistinguishable

from uniform ðq= n=a�; r = 0:01Þ. Thus, even though there were

patterned deviations from uniformity during optimization (the
174 Neuron 77, 168–179, January 9, 2013 ª2013 Elsevier Inc.
small gray circles connected with arrows in Figure 6A illustrate

the bimodal PMD distribution parameters for the 4 distributions

shown in Figure 7C), the final distributions exhibit almost no

bimodal trend. Even though our model shares parameters

between reaches, the optima show little trace of the biased

movement statistics in the distributions. This experiment sug-

gests a complex interplay between spatial experience and

neural activity, an exploration of which is beyond the scope of

this work. The basic conclusion is clear though—for well prac-

ticed/optimized movements, our model predicts that spatial

biases are likely to have little effect on the PMD distributions.

DISCUSSION

Biological motor control reflects a complex interplay between

brain, behavior, and biomechanics that makes it difficult to

experimentally examine the causal roles of the constituent

factors (Kalaska, 2009; Reimer and Hatsopoulos, 2009). The

application of optimization theory has been successfully applied

to understand many biological phenomena, including visual

cortex receptive fields (Olshausen and Field, 1996; Karklin and

Lewicki, 2009), motor behaviors (Alexander, 1996; Todorov

and Jordan, 2002; Todorov, 2004), muscle activations (Kurtzer

et al., 2006a; Fagg et al., 2002), and some features of motor

cortical neuron activity (e.g., Todorov, 2000; Trainin et al.,

2007). We used this approach to examine the characteristics

of a simple network model trained to control mechanical

plants with various abstractions of the primate musculoskeletal

system. Several key issues were demonstrated. First, our

model illustrates that the patterns of activity of its units tended

to display preferences for certain movement and torque

directions and that such biases depend critically on specific

features of the musculoskeletal system. Second, these distri-

butions closely parallel those observed in M1 neurons of

nonhuman primates performing similar tasks. Third, biased

experience had little effect on optimized unit preferences in our

network, though it does have some effect when movements

are still poorly practiced (i.e., when behavioral performance is

unrefined). Thus, our model motivates a shift back toward the

view espoused by early work on primary motor cortex: that M1

is intimately involved in the generation of low level muscle

commands (Phillips and Porter, 1964; Evarts, 1968, 1969; Hum-

phrey, 1972; Conrad et al., 1977; Asanuma et al., 1979; Cheney

and Fetz, 1980).

By varying the level of abstraction of the limb physics con-

trolled by our network model, we were able to tease apart which

factors dictate preference distributions. In the center-out reach-

ing task we found that limb geometry, intersegmental dynamics,

and muscle F-L/V mechanics all play a role in determining the

optimal distribution of PMDs. For the loaded-posture task we

found that the biarticular muscles are the dominant factor in

shaping the optimal distribution of PTDs.

Why is the PMD distribution dominated by limb geometry/

dynamics and relatively insensitive to the switch from mono- to

biarticular muscles, while the PTD distribution exhibits the

opposite trend? In the postural task, there is by definition little

or no movement at the optimal solution. Since loads are applied

at the joints, any contributions from geometry or intersegmental
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Figure 7. The Effect of Biased Experience on Preference Distributions
(A) The dynamic model is trained to move the 2D point-mass from a central location to targets distributed unevenly around a circle. Many more targets were

presented forward and backward than left or right; green circles show an example training batch of 100 targets.

(B) The bimodal Vonmises distribution from which target directions were drawn (Vonmises parameters were m=p=2; k= 1=2; see Supplemental Information).

(C) Reaching behavior on 16 equally spaced targets was used to asses unit PMDs at 4 times during learning (aligned by percent remaining cost). Top row: as

optimization progressed, the average PMD distribution became significantly bimodal (red lines indicates significant skew orientations), and then returned to

a uniform distribution during late stages of learning (q= n=a�, r = 0:008/q= 87:8�, r = 0:04/q= 8:4�, r = 0:009/q= n=a�, r = 0:01). Middle/bottom rows:

mean handpaths and speeds for 16 targets equally spaced about a circle. Networks initially learn to move in the direction of targets which are more prevalent

during training.
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terms are virtually nonexistent. Thus, the postural distribution is

unaffected by limb dynamics. In the reaching task, the strong

contributions from geometry and intersegmental terms simply

limit the visible influence of muscle configuration on the

PMD distribution even though, when present, the biarticulars

are substantially involved in generating movement torques (see

Figure 2E). This second observation warns that there may be

significant information present in the M1 neural population

which cannot be read by merely characterizing neuron PDs

and their distributions.

In most cases, the directional preferences of neurons and

muscles were similar for the various models tested. This is not

surprising due to the fact that muscle activation for reaching or

postural control depends on limb properties, and in turn, neural

activity controlled muscle activity. However, PMD and PTD

distributions of muscles and neurons are by no means mirror

images of each other. For example, the addition of biarticular

muscles resulted in substantive changes in the PMD distribution

of muscles that were not observed for the network units (Fig-

ure 5). Further, although the orientation of the distributions is

relatively similar, the muscle distributions show clear clustering

of preferences for each muscle group, whereas the distributions

for neurons are smooth and continuous.

Some of our results are prefigured by the simulations

described by Scott and Kalaska (1997). They constructed pop-

ulations of units which explicitly encoded either hand direction,

angular direction of shoulder/elbow, or required torque at the

shoulder/elbow. Each model unit discharged according to the
dot product of its random receptive field with a given movement

variable. Populations which encoded intrinsic variables (i.e.,

joint angles and torques) showed bimodal distributions similar

to those observed empirically, while those which encoded

extrinsic variables (i.e., hand-direction) did not. In contrast, units

in our model do not ‘‘encode’’ anything per se, they merely

discharge with activities optimized for the current task goal. In

our model, even if feedback is given in terms of hand position/

direction, neurons will exhibit the same bimodal distributions

because optimized behavior must still account for the bio-

physics of the limb (see Variations on Simulation Setup in the

Supplemental Information). Though Scott and Kalaska (1997)

saw qualitatively similar trends in the population tuning of model

units neurons, these trends arise for fundamentally different

reasons.

Several other models have studied M1 function by including

biomechanics and solving the associated optimal control prob-

lems (e.g., Guigon et al., 2007; Trainin et al., 2007). The results

of these models are firmly consistent with the idea that limb

biomechanics plays a role in shaping M1 neural activity. Our

workmoves beyond this fundamental notion, offering a paradigm

for teasing apart the specific contributions from different parts

of the periphery. Additionally, the fact that our model is parame-

trized by synaptic weights which are shared across solutions,

rather than non-parametric as in the case of Guigon et al.

(2007) and Trainin et al. (2007) has allowed us to begin to

examine the contributions of biased experience in determining

M1 neural activity.
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How Should We Understand and Generalize These
Results?
Our static model clarifies precisely what determines the optimal

preference distributions in a general sense: the optimal unit

activity is a function of all the components of the controlled

effector between network units, zðtÞ, and the desired output,

whether the desired output is a force, position, or velocity. For

example, if starget is a downstream target state (e.g., velocity or

torque), then optimal neural activity might be determined by

z� =A+ $starget, where A is a matrix (playing the role of the

controlled effector/plant dynamics) which maps neural activity

to states, s, andA+ is the pseudoinverse ofA. Solving for z� finds
the smallest z (in terms of the standard vector norm) which

minimizes the squared difference, 1=2kA$z� stargetk2. This

approach works nicely if the motor effector downstream of

z can be effectively approximated by a linear mapping such as

A. However, this cannot always be done effectively (e.g., the

fact that muscle can only ‘‘pull’’ is an important fact which

does not admit a simple linear approximation), and so it is often

important to keep the general form.

What does this mean in straightforward terms? How can we

explain the fact that both M1 neurons and the units in our model

develop prominent biases in their preferred directions? To begin,

we note simply that some movements require more force

(Mussa-Ivaldi et al., 1985; Graham and Scott, 2003) and thus

more muscle activity than others. Under the hypothesis that

M1 activity leads directly to muscle activation via a relatively

simple linear filter, these movements require correspondingly

more neural activity. While there are theoretically an infinite

number of ways that this neural activity might be chosen, with

the simple assumption that redundancy is resolved by penalizing

the squared magnitude of z, the result is that more neurons have

their largest response in the directions of movement which

require more muscle activity.

The view ofM1 presented above is admittedly simplistic. While

convenient for the purposes of exposition, it must be acknowl-

edged that there are many facets of M1 activity which cannot

be straightforwardly accounted for by this paradigm. For

example, many M1 neurons are known to correlate more

strongly with features of movement kinematics (Kakei et al.,

1999) than force or EMG, or exhibit complex or context-depen-

dent responses which cannot be easily accounted for by their

connection to downstream muscles (Fetz and Cheney, 1987;

Bennett and Lemon, 1996; Churchland and Shenoy, 2007).

These facts serve as a compelling reminder that we are a long

way from a synoptic view of M1 function. So, how should we

begin to think about the multitude of correlations observed in

M1? Our approach takes a fundamentally neutral stance on the

debates surrounding correlations in M1. Though many of the

neurons in our model exhibit relatively simple ‘‘muscle-like’’

responses, we do not explicitly require them to do so, and we

expect that, as the complexity of the modeled spinal cord,

physics, and task increase, the predicted optimal activity will

show a corresponding increase in complexity.

Implications for Spinal Cord
The vertebrate spinal cord supports a range of sophisticated

computational processes to control body and limb movements.
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In our model, zðtÞ is connected directly to motoneurons via

a simple linear filter, Wout, and thus ignores any unique compu-

tational processes provided by the spinal cord. In monkeys,

some pyramidal tract neurons in M1 project directly to motor

neurons (Bennett and Lemon, 1996; Cheney and Fetz, 1980; Ra-

thelot and Strick, 2009) but many more project indirectly via

interneurons in the spinal cord (Porter and Lemon, 1993). It

would be more accurate to include a mapping between M1 units

and spinal interneurons and some rudimentary feedback

process at the spinal level. Implementation of these features

was beyond the scope of the present study. Nonetheless, the

similarity in the distributions between modeled units and M1

neurons suggests that the influence of spinal computations on

the observed distributions of PMDs and PTDs is relatively

modest for the voluntary behaviors examined in the present

study.

How Does Spatial Experience Affect Preference
Distributions?
Our work also addressed the hypothesis that the bimodal distri-

bution of PMDs observed in M1 reflects directional hyperacuity

and is caused by biases in experience (Naselaris et al., 2006).

Although some work has examined the statistics of primate

limb movement experience (Graziano et al., 2004; Howard

et al., 2009), these studies do not quantitatively address whether

fore/aft movements are more common than side-to-side

movements. However, we have shown that bimodal preference

distributions emerge in a straightforward mechanistic model

without the introduction of biases in spatial experience. We

also demonstrated that biases in spatial training do not cause

any significant nonuniformity in the optimal distribution of

PMDs for practicedmovements (Figure 7). Taken together, these

observations motivate the conclusion that the bimodal prefer-

ence distributions seen in M1 are predominantly the product of

the structure of the downstream biomechanics. This is not to

say that the statistics of training does not have effects on motor

processing. There are almost certainly combinations of move-

ments of the limb or body that are not extensively experienced,

and our model points to a subtle interplay between training,

behavioral performance, and preference distributions.

Contrast with Neural Coding in Primary Visual Cortex
At first glance, it appears our results are at odds with computa-

tional models of primary visual cortex (V1), which demonstrate

that the tuning properties of units are determined by: a cost func-

tion (e.g., find a coding which minimizes information loss while

maximizing sparseness), the upstream sensory processing

(i.e., filtering done by the retina and LGN) and the statistics of

natural images (Blakemore and Cooper, 1970; Li et al., 2008;

Olshausen and Field, 1996; Karklin and Lewicki, 2009). These

models have tended to emphasize the importance of the statis-

tics of natural scenes in determining the tuning properties of

neurons. Our work with artificial neural networks for control pla-

ces the emphasis elsewhere. We found that the biomechanics of

the downstream controlled system, rather than the statistics of

environmental experience, appears to be the dominant factor

determining unit direction preferences for our planar movement

task. In general, both factors—the statistics of images (or
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behavior) and the properties of the interceding sensory or motor

plant—influence neural processing to varying degrees. The

contrasts between these two systems may hinge on this fact:

in our model of the motor system the number of neurons far

exceeds the number of degrees of freedom of the effector and

thus we face an overdetermined problem where redundancy

must be resolved, whereas models of visual processing must

deal with data compression problems since the visual world

presents much more data than it is possible to store in visual

cortex synapses.

EXPERIMENTAL PROCEDURES

Empirical Results

While the focus of this study is onmodeled results, we also present neural data

which augments findings from previous studies (Scott et al., 2001; Herter et al.,

2007) by the inclusion of additional data of the same form. The tasks, neural

recording procedures, and analyses are identical to those previously

published. Briefly, we used the KINARM robotic system to monitor planar

limb movements involving flexion and extension movements of the shoulder

and elbow joints and apply joint-based loads (BKIN Technologies, Kingston,

Canada). An augmented reality system using a semitransparent mirror

coplanar with the limb allowed presentation of spatial targets in the workspace

while permitting the monkeys to view their entire limb. Four monkeys (Macaca

mulatta) were trained to perform center-out reaching and loaded-posture

tasks. All experiments were approved by the Queen’s University Research

Ethics Board. In the reaching task, the monkey was required to move its

hand from a central target to either 8 or 16 peripheral targets located uniformly

around a circle with radius 6 cm (Figure 1A). In the posture task, the monkey

was required to maintain its hand at the central target while 9 static torque

load combinations were applied to the shoulder and elbow joints (flexor,

extensor and null at each joint; Figure 1B). See Figure 1 and Supplemental

Information for further details.

Dynamic Model Specification

We constructed a simple network model which was optimized to make rea-

ches and maintain postures under static loads while keeping neural and

muscular activities small. The network controlled a 2-degree of freedom

(shoulder and elbow) arm model which was constrained to move in a plane

and included arm geometry (Cheng and Scott, 2000; Trainin et al., 2007), inter-

segmental dynamics (Cheng and Scott, 2000), mono- and biarticular muscle

groups with fixed moment arms (Graham and Scott, 2003; Trainin et al.,

2007), and force-length and force-velocity curves (Brown et al., 1999; see

Musculoskeletal Model Specification in Supplemental Information). The

four-dimensional arm state at time t, xðtÞ, is a column vector of joint angles

and velocities and evolved according to, Dxðt + 1Þ= fðxðtÞ; tðtÞÞ, where fð$; $Þ
are the system dynamics and tðtÞ was a 2 dimensional column vector con-

taining the torque applied at the shoulder and elbow joints. The current state

of the hand is given by yðtÞ=gðxðtÞÞ, where gð$Þ is the mapping from arm

state to hand state in Cartesian coordinates. The arm dynamics were inte-

grated forward with simple Euler integration and the time step, Dt, was set

to 20 ms.

The network was feedforward, and consisted of two layers of standard

sigmoidal units (i.e., sðxÞ= 1=ð1+ e�xÞ). The output layer of neurons, zðtÞ,
sent their weighted activity to a vector of 6 lumped muscle actuators, uðtÞ.
The corresponding muscle activity at time t is given by, uðtÞ=suðWout$zðtÞÞ,
where suð$Þ is smooth ramp function, andWout is a matrix of synaptic weights

which dictate how activity in zðtÞ leads to changes in muscle activity. For

muscle activation in our dynamic model, suð$Þ, we used a smooth version of

a ramp function which is 0 for values less than or equal to zero and linear for

values greater than zero (see Muscle Activation in Supplemental Information).

In simulations, Wout was random and fixed, with elements of the matrix

drawn from a Normal distribution (Todorov, 2000; Shah et al., 2004; Trainin

et al., 2007; we examined several variations; see Discussion and Variations

on Simulation Setup in Supplemental Information). The two joint torques
were given by tðtÞ=M$hðxðtÞ;uðtÞÞ, where M is the matrix of muscle moment

arms, and hð$; $Þ is the force-length/velocity (F-L/V) function which computes

the tension force produced by each muscle given its activity, uðtÞ, and

the length and velocity of the muscle (computed from the joint angles and

velocities, xðtÞ).
The units zðtÞ received a version of state feedback, xðtÞ, goal information,

y�ðtÞ, and load context information, cðtÞ, filtered by the first layer of neurons,

vðtÞ (see Sensory Feedback Filtering in Supplemental Information). The goal

information was specified in Cartesian coordinates and the load context

information was described in terms of the loads applied at the shoulder and

elbow joints. The network was optimized to perform both reaching and

loaded postures over a central portion of the workspace (Figure 2A). For an

individual trial, i, of reaching or posture, the network is optimized to minimize

the cost function,

Ji =
1

2

Xt = tf

t = 0

[iðxðtÞ;uðtÞ; zðtÞ; y�
i ðtÞ; tÞ (Equation 1)

where, [ið$; $; $; $; $Þ is the instantaneous cost, y�i ðtÞ is the desired hand state

for trial i, and tf is the final time. This is the general form of the total cost for

either a posture or reach trial; it sums the cost from the limb state ðxðtÞÞ and
muscle and neural activities (uðtÞ and zðtÞ, respectively) at each time step, t.

During posture and at the beginning and end of reaches the instantaneous

cost was

[iðxðtÞ;uðtÞ; zðtÞ; y�
i ðtÞ; tÞ= kgðxðtÞÞ � y�

i ðtÞk2 +akuðtÞk2 + bkzðtÞk2
(Equation 2)

where k$k is the standard vector norm and a and b are constants specifying the

importance of keeping neural and muscle activity small. The kinematic error

term, kgðxðtÞÞ � y�i ðtÞk2, penalized the deviation of the hand from the desired

state. The instantaneous cost was similar for reaching except that during the

reach the kinematic error term was dropped from all but the final time-step,

tf , and a term which penalized deviations from a straight hand path was intro-

duced in its place (i.e., no explicit reference trajectory was provided to the

network as input, but handpaths were encouraged to be roughly straight).

Equations 1 and 2 mean that in the reaching task, the network is required to

minimize the distance between the hand and target at the final time and

move along a roughly straight path to get there; in the posture task, these

equations require that the network minimize the distance between hand and

target at every time step; in both tasks, the network must keep muscle and

neural activities small at all times.

Each network had 1,000 units in zðtÞ, and the synaptic weights of each

network, Wout, were initialized randomly (from a Normal distribution with

a mean of 0 and variance 0.001) prior to the optimization. Network activity

was computed as

zðtÞ=sz

�
W filt$sv

�
W in$½xðtÞ; cðtÞ; y�ðtÞ�+bv

�
+bz

�
(Equation 3)

where szð$Þ and svð$Þ are the M1 and filter activation functions which were

standard sigmoids, W filt, bz and W in, bv , are the weight matrices and bias

vectors for the M1 and filters, respectively, and ; is the vertical concatenation

operation. In most of our simulations, Wout is fixed and the aggregate param-

eter vector, w = ½vecðW filtÞ;bz; vecðW inÞ;bv �, is optimized (here, vecð$Þ returns
a vector version of the matrix given as input). In the simulations where

w = ½vecðWoutÞ; vecðW filtÞ;bz; vecðW inÞ;bv � is also optimized then. In either

case, we adjoined to the total cost function with the regularization term,

1=2 gkwk2 (g was a scalar and was set to 10�5 in our simulations). This term

is often referred to as a weight decay term and is a principled choice for reg-

ularization, tending to confer good generalization properties; note that in the

static model there are no weight decay terms since there are no upstream

parameters—neural activity is optimized directly. w was initialized randomly

using a Normal distribution centered on 0 with variance 0.001. We computed

the derivatives of the total cost function with respect to the aggregate param-

eter vector, vJtotal=vw, and used this to perform gradient descent.

To optimize the network to perform reaches and loaded-postures over the

central workspace, we optimized an aggregate cost function, Jtotal =
P

iJi ,

composed of the sum of the costs for many random reach and loaded-posture

trials (i.e., the Ji ’s). Using a version of backpropagation through time
Neuron 77, 168–179, January 9, 2013 ª2013 Elsevier Inc. 177
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(Rumelhart et al., 1986; Werbos, 1990; Stroeve, 1998) modified for our model,

we found the partial derivatives of Jtotal with respect to the adjustable param-

eters in the model and used a conjugate gradient descent algorithm to find

a minimum (see Optimization and Analysis and Computational Details in

Supplemental Information).

Static Model Specification

For the center-out reaching task, we optimized this model to generate 16

target initial hand velocities equally spaced around the unit circle. These

targets are here specified in the 2 3 16 matrix, _ytarget. Similarly, to emulate

the loaded-posture task, we optimized the model to generate 16 joint torque

combinations equally spaced around the unit circle and specified in a 2 3

16 matrix, ttarget.

As before, we used a network with 1,000 units and neural activity for the 16

targets was thus specified by the matrix, z. To ensure that muscles could

only ‘‘pull,’’ we employed the standard sigmoidal function for the muscle

activation, u=suðWout$zÞ, and Wout was again the matrix of connectivity

strengths between units and muscles. The elements of Wout were drawn

from a Normal distribution with a mean of 0 and variance 0.001.

To approximate the effect of muscle F-L/V mechanics, we multiplied each

muscle’s activity by the scaling factor found by averaging (from movement

onset to 100 ms after peak velocity) the F-L/V effects associated with the

optimal solution foundwith the dynamicmodel for a givenmovement direction.

Thus, muscle tensions were found via, t=H,u, where,H, is the 63 16matrix of

F-L/V scaling factors appropriate for each of the movement directions and , is

the element-wise product. Joint torques were found via the linear mapping,

t =M$t, where M is the 2 3 6 matrix of fixed moment arms. We employed

a linear approximation, the 2 3 2 matrix F, of the mapping from joint torques

to joint velocities, _x, so that, _x =F$t. Similarly, we used a linear approximation,

the 232 matrix G, of the mapping from joint velocities to hand velocities in

Cartesian coordinates, so, _y =G$ _x.

For the center-out task, we optimized the cost function given by

JðzÞ= 1

2
kG$F$M$

�
H,su

�
Wout$z

��� _ytargetk2F +
1

2
akuk2F +

1

2
bkzk2F (Equation 4)

where, k$kF is the Frobenius norm of a matrix and is equal to the square root of

the sum of the squared elements of the matrix and a and b are scalars which

weight the importance of keeping muscle and neural activity small. In practice,

a and b were both set to 10�5, though any value low enough to allow the opti-

mization to find solutions where the summed target errors were small (e.g.,

1=2 k _y � _ytargetk2F<10�1) produced results similar to those reported here.

Under this model, the optimal unit activity is given by, z� = arg min
z

JðzÞ. We

computed the partials of J with respect to the elements of z, used conjugate

gradient descent to find z� and then fit a plane to the activity of each unit to

find its PMD. Thus, in the static model the neural activities are sought

directly—in this sense the optimal activities are nonparametric, which has

the added benefit that the solutions sought in the static case are not the

result of choosing a specific nonlinear activation function. Optimiza-

tions were terminated when cost changes remained negligible for 1,000

consecutive updates. For the loaded-posture task, we optimized the cost

function given by

JðzÞ= 1

2
kM$

�
H,su

�
Woutz

��� ttargetk2F +
1

2
akuk2F +

1

2
bkzk2F (Equation 5)

and found PTDs for each unit. Equations 4 and 5 require the network to mini-

mize the squared distance between appropriate initiating velocities and tor-

ques for the reaching and postural tasks, respectively, while simultaneously

minimizing the neural and muscle activities. As with the dynamic model, we

repeated these optimizations 10 times with Wout initialized randomly each

time. See Supplemental Information for details.
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